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SOLVING THE PROBLEM OF GRAVITATIONAL

COMPRESSION OF A LAYERED SPHERE

(BY THE EXAMPLE OF THE EARTH)

UDC 539.3L. V. Baev and V. N. Solodovnikov

The problem of spherically symmetric, gravitational compression of an isotropic hyperelastic layered
sphere which modeling the region of the Earth below the Mohorovičič boundary is solved. The known
mechanical characteristics of the Earth in the compressed state are used to find its characteristics
in the unstrained state obtained by adiabatic or isothermal stress relief. The stress state differs
significantly from the state of purely hydrostatic compression. The minimum bulk compression and
maximum radial tension occur not on the boundary of the sphere but in depth at certain distances
from the boundary.

Key words: the Earth, adiabatic or isothermal stress relief, isotropic hyperelasticity, mechanical
characteristics.

1. Elastic Characteristics of the Earth. We consider a sphere of radius R̂1 = 6341 km which models
a region of the Earth (the Earth radius is R̂ = 6371 km; the upper boundary of the region is at a depth R̂ − R̂1

= 30 km). In the solution proposed, this region is partitioned into five layers which correspond to the layers adopted
in geophysics: layers B, C, and D in the mantle, the outer core E, and the inner core G with discontinuities
introduced for the functions defining the state of the material or their derivatives at the boundary points between
the layers. Layer F , which is intermediate between layers G and E, is also replaced by a discontinuity surface. The
partitioning is performed using the data of [1].

According to the distributions of the density ρ̂ and the propagation velocities of longitudinal and transverse
waves vp and vs at points (nodes) along the radius of the compressed Earth r̂ given in [1], we choose boundary
points between layers A, B, C, D, E, and G with radial coordinates r̂A = R̂1 = 6341, r̂B = 5971, r̂C = 5371,
r̂D = 3482, r̂E = 1211 (km) [A is the layer above the surface r̂ = R̂1; Bullen [1] gives the depths rather than radial
coordinates of the nodal points (R̂− r̂); in the present paper, the depths of the boundary points take values of 30,
400, 1000, 2889, and 5160 km, respectively]. At the boundary points, the values of ρ̂, vp, and vs [1] are assumed to
refer to the underlying layer unless they are considered continuous. For discontinuous ρ̂, vp, and vs, the values at
the boundary point that refer to the overlying layer are found by extrapolation of their values at the nodes of this
layer. Continuous quantities are vp at the point r̂B , ρ̂ at the point r̂E , and ρ̂, vp, and vs at the point r̂C but it is
assumed that the derivatives of these functions may be discontinuous. With introduction of discontinuities, none
of the values of ρ̂, vp, and vs given in [1] is corrected. At the boundary points r̂B , r̂D, and r̂E , limiting values are
added which refer to the overlying layer. After extrapolation, the nodes at 3485 km and 1251 km are not used as
they are too close to the points r̂D and r̂E .

The values of ρ̂, vp, and vs are used to calculate the shear and bulk moduli of the material in the compressed
state of the Earth [1]:

µ = ρ̂v2
s , K = ρ̂(v2

p − 4v2
s/3).
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TABLE 1
Characteristic of the Earth in Compressed and Unloaded States

Node r̂,
km

r̂′ ρ̂,
g/cm3

vp,
km/sec

vs,
km/sec

K,
105

MPa

µ,
105

MPa

ν ρ,
g/cm3

K0,
105

MPa

µ0,
105

MPa

ν0

1 6341 1 3.32 7.74 4.62 1.044 0.7086 0.2233 2.909 0.6335 0.6209 0.1306

2 6271 0.989 3.35 7.95 4.5 1.213 0.6784 0.2643 2.933 0.7341 0.594 0.1814

3 6171 0.9732 3.39 8.26 4.5 1.398 0.6865 0.289 2.945 0.8222 0.5963 0.208

4 6071 0.9574 3.42 8.59 4.5 1.6 0.6926 0.3109 2.953 0.9207 0.5979 0.2331

5
5971 0.9417 3.44 8.92 4.5 1.808 0.6966 0.3293 2.954 1.021 0.5982 0.2549
5971 0.9417 3.77 8.92 4.72 1.88 0.8399 0.3056 3.222 1.044 0.7179 0.2203

6 5721 0.9022 4.17 10.48 5.8 2.71 1.403 0.2792 3.489 1.396 1.174 0.1717

7 5371 0.8471 4.54 11.44 6.36 3.493 1.836 0.2763 3.714 1.664 1.502 0.1531

8 4371 0.6893 5.09 12.79 6.92 5.077 2.437 0.2931 3.941 2.007 1.887 0.1421

9 3671 0.5789 5.4 13.61 7.26 6.208 2.846 0.3011 4.05 2.209 2.135 0.1345

10
3482 0.5491 5.695 13.64 7.3 6.549 3.036 0.2993 4.234 2.264 2.257 0.1259
3482 0.5491 9.95 8.12 0 6.561 0.05 0.4962 7.813 2.72 0.0393 0.4928

11 2371 0.3739 11.39 9.53 0 10.34 0.05 0.4976 7.879 2.834 0.0346 0.4939

12
1211 0.191 12.74 10.347 0 13.64 0.05 0.4982 8.578 3.43 0.0337 0.4951
1211 0.191 12.74 11.25 3.86 13.59 1.898 0.4333 8.557 3.393 1.275 0.333

13 0 0 13.03 11.25 2.91 15.02 1.103 0.4641 8.715 3.699 0.7379 0.4065

In the outer core (at vs = 0), the zero value for µ is replaced by µ = 5 · 103 MPa, which is much smaller than that
in the remaining layers. The coordinates of the nodes r̂, the values of r̂′ = r̂/R̂1, ρ̂, vp, vs, K, and µ, and Poisson’s
constant ν = (3K − 2µ)/[2(3K + µ)] at the nodes are given in Table 1. Nodes 1, 2, 3, 4, and 5 are in layer B,
nodes 5, 6, and 7 in layer C; nodes 7, 8, 9, and 10 layer D; nodes 10, 11, and 12 in the outer core; and nodes 12
and 13 in the inner core. Nodes 1, 5, 7, 10, and 12 are the boundary points between the layers with the coordinates
r̂A, r̂B , r̂C , r̂D, and r̂E , respectively; node 13 is at the center r̂ = 0. Tables 1 and 2 give a pair of values for
each of the parameters at nodes 5, 10, and 12; the first value refers to the overlying layer and the second value
to the underlying layer; for continuous parameters, two identical values are given; at node 7, the parameters are
continuous.

Thus, instead of regions of fast changes of ρ̂, vp, vs, K, µ, and ν given in [1], the above five-layer partitioning
allows one to introduce discontinuity surfaces of these parameters and to obtain smoother distributions of these
parameters and the sought functions obtained using them in each layer. The data of [1] are also discussed in [2–4].

2. Constitutive Equations. We assume that after removal of gravitational forces in the entire region,
the material considered isotropic hyperelastic [5] can pass (in an adiabatic or an isothermally reversible manner)
to a state with zero stresses and strains without failure and loss of continuity. This implies continuity of the radial
coordinates of material points in the unloaded and compressed state r > 0, r̂ > 0, one-to-one correspondence
between them r̂ = r̂(r), and satisfaction of the inequality r̂,r > 0. The proposition of the theory of isotropic
hyperelastic bodies on coaxiality of the stress and strain tensors in this problem is valid by virtue of spherical
symmetry.

We introduce the strain tensor invariants

J = (εmεnεl)1/2, Υ =
ε2

m + ε2
n + ε2

l

(εm + εn + εl)2
− 1

3
, I1 =

1
2

(εm + εn + εl) (2.1)

(m, n, l is an even permutation of subscripts 1, 2, and 3).
Here and below, εi are the squares of the main multiplicities of the elongations, i.e., the ratios of the current

to the initial values of the squared length of the elementary material fibers passing along the principal axes of the
strain tensors; they are related to the main components of the Green strain tensor ei by the equalities εi = 1 + 2ei

(for zero fiber strain, εi = 1; in the case of fiber elongation, εi > 1 and increases; and in the case of fiber shortening,
εi < 1 and decreases); J is the ratio of the current to the initial value of the elementary volume or the Jacobian
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of transformation of the initial Cartesian coordinates of the material points to the current coordinates [the bulk
strain equal to (J − 1) is compression for J < 1 and tension for J > 1]; in space with Cartesian coordinates εi,
the value of Υ = I2I

−2
1 equals one-third of the squared slope of the radius vector of the given point to the half-line

ε1 = ε2 = ε3; I2 is the shear strain intensity. The inequalities εi > 0, I1 > 0, 0 6 Υ < 2/3, and J > 0 hold. The
subscript i takes values 1, 2, and 3; the variable in the subscript after the comma denotes partial differentiation.

In isotropic hyperelastic bodies, the main components of the Cauchy stress tensor (physical components of
stresses) are found from the constitutive equations [6, 7]

σ̂i = µ̂εi(εi − χ̂) + p, (2.2)

where µ̂ = βI−2
1 J−1, χ̂ = 2I1(Υ + 1/3), β = Ψ,Υ, p = Ψ,J = (σ̂m + σ̂n + σ̂l)/3 is the average pressure (compression

pressure for p < 0 and extension pressure for p > 0), and Ψ is the strain energy density, a determining function
specified for materials. In spherically symmetric states, the stresses and strains in all directions orthogonal to the
radial direction are identical: σ̂2 = σ̂3, ε2 = ε3 = (r̂/r)2 and in the radial direction, ε1 = (r̂,r)2.

In adiabatic processes, Ψ is determined from the increment in the internal energy density as a function of
Υ, J , and S at a constant entropy density per unit volume of the unstrained body S; in isothermal processes,
it is determined from the increment in the free-energy density as a function of Υ, J , and T at constant absolute
temperature T . The values of the argument S in adiabatic processes and the values of the argument T in isothermal
processes can be different at different points but at each material point, they remain constant. Therefore, Ψ
depends on only two arguments Υ and J . The shear and bulk moduli µ0 and K0 appearing in the expression
for Ψ and describing the material in the unstrained state are found from the solution the problem using the known
characteristics of the material in the strained state.

The relationship between the pressure and bulk strain is described by the Birch–Murnaghan equation [8, 9]

p = (3/2)K0(J−5/3 − J−7/3), (2.3)

where K0 is the bulk modulus of the material in the initial unstrained state (p,J = K0 at J = 1). As the volume
decreases, the pressure p increases in absolute value.

The assumption that p depends only on J implies that the derivatives p,Υ = β,J = 0 and hence, β depends
only on one argument Υ. Because of lack of data on the dependence of β on Υ and because of insignificant changes
in Υ, we assume, as a first approximation, that β is a constant with the same value as in Hooke’s law: β = 9µ0/4.
As a result, Ψ is represented as the sum of two terms — the shear and bulk strain energy densities, each of which
depends only on one argument:

Ψ = Ψ1 + Ψ2, Ψ1 = (9µ0/4)Υ, Ψ2 = (9K0/8)(1− J−2/3)2.

As the strains tend to zero, Ψ continuously becomes a determining function of Hooke’s law with the same two
material constants as in Hooke’s law: µ0 = E0/[2(1 + ν0)] and K0 = E0/[3(1 − 2ν0)] (E0 and ν0 are the Young’s
modulus and Poisson’s constant for the unstrained material, respectively).

We note that at large strains, the condition of constancy or even boundedness of β implies the existence of
dropping stress–strain curves.

3. Relationship of Elastic Characteristics of the Material in the Strained and Unstrained
States. In [1], the stress and strain increments due to propagation of longitudinal and transverse waves are related
by a linear Hooke’s law for an isotropic material with two constants — shear and bulk moduli µ and K. For the
components of the Yauman stress rate tensor Σ̂ and the strain rate tensor η̂ that generate these increments, the
Hooke’s law is written as follows (m, n, l is an even permutation of subscripts 1, 2, and 3):

Σ̂mm = 2µη̂mm + (K − 2µ/3)(η̂mm + η̂nn + η̂ll), Σ̂mn = 2µη̂mn. (3.1)

Let us find the relationship of µ and K with the shear and bulk moduli µ0 and K0 of the unstrained material
according to the theory of isotropic hyperelastic bodies [5–7].

We assume that the pressure increment ∆p is proportional to the bulk strain increment determined with
respect to the current volume of the material with the coefficient — a bulk modulus K: ∆p = KJ−1∆J . Letting
the increment of the Jacobian ∆J tend to zero, we arrive at the equality p,J = KJ−1, which coincides with that
given in [1] (taking into account the opposite sign of p in [1] and the expression of J = ρ/ρ̂ in terms of the initial and
current density ρ and ρ̂). From this and from (2.3), we obtain the relation linking the bulk moduli in the unloaded

862



and compressed states: K = (1/2)K0(7J−7/3 − 5J−5/3). As the volume decreases, the resistance to the additional
deformation increases: K →∞ at J → 0.

Let us find the relationship between µ and µ0. In isotropic hyperelastic bodies, the nondiagonal components
of the tensors Σ̂ and η̂ [which, in this case, can have values different from those in (3.1)] satisfy the equalities [6, 7]

Σ̂mn = Bl η̂mn, Bl =
9µ0(εm + εn)

J(εm + εn + εl)3
[2εmεn + (εm + εn)εl − ε2

l ]

with the coefficients Bl dependent on the current strained state of the material. We take into account that ε2 = ε3

and B2 = B3 and introduce the parameter ξ = (ε2 − ε1)/(ε2 + ε1). Calculations show that the parameter ξ should
be small. In this case, the coefficients Bl > 0 and their average value (B1 + 2B2)/3 is close to the doubled value
of µ = µ0J

−1, which can be considered the shear modulus of the material in the compressed state. The relative
values of the differences between B1, B2, and 2µ are small. They reach maxima (to 20%) near the boundary surface
r̂ = R̂1 and decrease when approaching the outer core. In passing from the mantle to the outer core, the relative
values of the differences increase suddenly but because µ is small in the outer core, this increase is insignificant and
the differences can be ignored. In the inner core, the differences are negligible.

In the equations of isotropic hyperelastic bodies [6, 7], unlike in Eqs. (3.1), the stress rates Σ̂mm are expressed
in terms of the strain rates η̂ii (i = 1, 2, 3) with an asymmetric coefficient matrix which depends on the current
strain state of the material. The differences between the components of this matrix [calculated from the results
of the solution given below with satisfaction of the equalities µ0 = µJ , K0 = 2K(7J−7/3 − 5J−5/3)−1] and the
corresponding components of the matrix in (3.1) are considerable only in the mantle (the relative values of the
differences between the diagonal components of the matrices do not exceed 3%; the relative differences between
the nondiagonal components reach 40% on the boundary surface r̂ = R̂1 and decrease when approaching the outer
core). In the outer and inner cores, we can ignore the differences between the components of the matrices are
negligible and Eqs. (3.1) are appropriate.

Thus, setting

µ0 = µJ, K0 = 2K(7J−7/3 − 5J−5/3)−1, (3.2)

we arrive at the following problem: to find the coordinates of the nodes r and the values of the moduli µ0 and K0

of the unstrained material from the known values of µ and K at the nodes with coordinates r̂. The coordinates r

and r̂ (r′ = r/R1 and r̂′ = r̂/R̂1 are the nondimensional coordinates referred to the radii of the boundary surface
in the unloaded and compressed state of the sphere R1 and R̂1) are related via the function ε2 by the equalities

r′ = r̂′(ε2(A)/ε2)1/2, (3.3)

where ε2(A) = (R̂1/R1)2 is the value of ε2 at the point r̂′ = r′ = 1.
The values of µ0, K0, and r′ are found by iterations. In the initial iteration for the Jacobian J , according

to (2.3) and (3.2), we use the values

J =
(3K + 7p

3K + 5p

)3/2

at a pressure p = P (P > −3K/7) determined form the formula of purely hydrostatic compression; setting ε1 = ε2

and ε2 = J2/3, we find µ0, K0, and r′. In the remaining iterations, J and ε2 are taken from the solutions of
equilibrium problems and µ0, K0, and r′ are calculated by formulas (3.2) and (3.3) (in the second iteration, we use
the same J as in the first iteration; new values are taken only for ε2).

In each iteration in layers B, C, and D and in the outer core, the moduli µ0 and K0 are approximated as a
functions of r′ by interpolation polynomials passing through the nodal values and the density ρ̂ and the mass M

enclosed in a sphere of radius r̂ are approximated by interpolation functions of the second order. We note that in
layer B, to suppress the wavelike variation in µ0 and K0, we set the polynomials equal to the specified values of the
derivatives µ0,r′ and K0,r′ at the boundary point r̂B and use an interpolation function of the first order for ρ̂. In the
inner core, µ0, K0, ρ̂, and M are approximated by cubic polynomials with zero first- and second-order derivatives
with respect to r′ at the center r′ = 0. The third-order polynomials are used to ensure the required spherical
symmetry of the problem of smallness of derivatives of the sought functions with respect to r′ with approach to
the center. As a result, µ0, K0, ρ̂, and M are found as functions r′ with discontinuities of these functions or their
derivative at the boundary points between the layers.
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During iterations, the difference of iterations of µ0, K0, and r′ at the nodes decrease monotonically. In the
last iteration performed, the relative values of the differences between the values of µ, K, and r̂′ given in Table 1
and calculated by the formulas µ = µ0J

−1, K = (1/2)K0(7J−7/3−5J−5/3), and r̂′ = r′(ε2/ε2(A))1/2, increase when
approaching the center r′ = 0 but do not exceed 1.25 · 10−4, 4 · 10−4, and 3 · 10−5, respectively, in the entire region.

4. Solution of the Problem. For spherically symmetric states, the equilibrium equation is written as

σ̂1,r̂ +
2
r̂

(σ̂1 − σ̂2) + q̂ = 0
(
q̂ = −γMρ̂

r̂2
, M = 4π

r̂∫
0

ρ̂r̂2 dr̂
)
. (4.1)

Here q̂ is the force of gravitational attraction from the terrestrial globe which acts per unit volume of the deformed
material and points to the center of the Earth; γ = 6.67 · 10−8 cm3/(g · sec2) is the gravitational constant.

We integrate Eq. (4.1) over layer A to the surface r̂ = R̂, where it is assumed that σ̂1 = 0. Taking into
account the relatively small thicknesses of the layer and omitting the integral of the second term in (4.1), we obtain

σ̂1 = P1 = −
R̂∫

R̂1

γMρ̂

r̂2
dr̂ at r̂ = R̂1, (4.2)

which is taken to be the radial stress exerted by layer A on the underlying region of the Earth. It is estimated by
the average density in layer A: ρ̂ = 2.84 g/cm3; then P1 = −0.8409 · 103 MPa.

Integrating Eq. (4.1) from r̂ to R̂1 and using (4.2), we obtain

σ̂1 = P +

R̂1∫
r̂

2
r̂

(σ̂1 − σ̂2) dr̂, P = −
R̂∫

r̂

γMρ̂

r̂2
dr̂ (0 6 r̂ 6 R̂1), (4.3)

where P is the pressure of purely hydrostatic compression (defined here with the sign opposite to that in [1]: P < 0).
The stress state is not close to purely hydrostatic compression. The circumferential stresses on the surface r̂ = R̂1,
as shown by the solution, are 19 times higher than the radial stresses; in almost the entire region σ̂2 < σ̂1 < 0, the
integral on the right side of the first equality in (4.3) is positive. Therefore, P gives only the upper bound for the
radial stresses P 6 σ̂1 < 0.

To solve the equilibrium problems, in (4.1) it is convenient to convert to the other independent variable —
the initial radial coordinate r (0 6 r 6 R1):

σ̂1,r +
2
√

ε1

r
√

ε2
(σ̂1 − σ̂2)−

γMρ̂
√

ε1

ε2r2
= 0

(
M = 4π

r̂∫
0

ρ̂r̂2 dr̂
)
. (4.4)

Here ρ̂ and M are represented as functions r by interpolation of their known values at the nodes. The continuity
conditions for σ̂1 and r̂ at the boundary points between the layers and the equality σ̂1 = P1 at r = R1 are satisfied;
at the center, r̂ = r = 0.

Setting ρ̂ = ρJ−1 in (4.4) and considering the density in the unstrained state ρ known, we arrive at the
equation

r̂2σ̂1,r + (r̂2),r(σ̂1 − σ̂2)−
γMρr2

r̂2
= 0

(
M = 4π

r∫
0

ρr2 dr
)
, (4.5)

which, in contrast to Eqs. (4.1) and (4.4), follows, with allowance for (2.2), from the condition of stationarity of the
functional

Π =

R1∫
0

(
Ψ− γMρ

r̂

)
r2 dr − 1

3
P1R̂

3
1.

In [7], unlike in the present study, the problem of gravitational compression of a sphere for constant ρ, µ0, and K0

is solved using Eqs. (4.5).
Let us calculate ε1 and ε2 on the surface r̂ = R̂1. Substituting the expression for the radial stress obtained

from (2.1)–(2.3) for ε2 = ε3 into the equality σ̂1 = P1, we have equation
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9µ0f

4J
+

3
2

K0(J−5/3 − J−7/3) = P1

(
f =

16ξ(ξ2 − 1)
(3 + ξ)3

, ξ =
ε2 − ε1

ε2 + ε1

)
, (4.6)

which for µ0 > 0, K0 > 0, P1 < 0, −1 < ξ < 0, f > 0, and 0 < J < 1 has the unique material root J . Having
determined J , we obtain

ε1 = J2/3
(1− ξ

1 + ξ

)2/3

, ε2 = J2/3
(1 + ξ

1− ξ

)1/3

. (4.7)

The curves of p and σ̂2 versus ξ becomes dropping for ξ = ξ∗ = −(1 + 2
√

7)/9 ≈ −0.699 (at this point, f takes the
maximum value). Branching of the solutions of Eqs. (2.2) is ruled out if ξ > ξ∗∗ = 3− 2

√
3 ≈ −0.464 [7], which is

valid in the problem considered.
Specification of the quantities µ and K on the boundary surface implies constraints on the parameter ξ.

Substituting the expressions for µ0 and K0 from (3.2) into (4.6), we arrive at the equation

9µf

4
+

3K(J2/3 − 1)
7− 5J2/3

= P1,

which is satisfied for 0 < J < 1 only if f < 4(3K + 7P1)/(63µ). From this it follows that ξ > −0.363, and this is
satisfied in the problem considered.

The assumption that the shear modulus does not vary during deformation (i.e., µ = µ0) leads to violation
of the boundary conditions on the surface r̂ = R̂1. Indeed, in this case, the equation

9µf

4J
+

3K(J2/3 − 1)
7− 5J2/3

= P1,

should be satisfied, which has two roots in the interval 0 < J < 1 instead of one for f < 0.0956 and ξ > −0.1424
and does not have roots for ξ < −0.1424.

To solve the equilibrium problems, we use the following algorithm. We substitute into (4.4) the following
expressions obtained from (2.1)–(2.3) for ε2 = ε3:

σ̂1 =
18µ0

√
ε1(ε1 − ε2)

(ε1 + 2ε2)3
+

3
2

K0(J−5/3 − J−7/3), σ̂1 − σ̂2 =
27µ0

√
ε1(ε1 − ε2)

(ε1 + 2ε2)3
.

Adding the equality ε2,r = (2/r)(
√

ε1ε2 − ε2) to (4.4), we arrive at the system of differential equations of the first
order in ε1 and ε2:

ε1,r′ +
1
f1

(
f2 +

f3

r′
− αf4

r′2

)
= 0, ε2,r′ − f5

r′
= 0 (0 6 r′ 6 1), (4.8)

in which

f1 =
9µ0(11ε1ε2 − 3ε2

1 − 2ε2
2)√

ε1(ε1 + 2ε2)4
+

K0

4ε1
(7J−7/3 − 5J−5/3), J = ε2

√
ε1,

f2 =
18
√

ε1(ε1 − ε2)
(ε1 + 2ε2)3

µ0,r′ +
3
2

(J−5/3 − J−7/3)K0,r′ , f5 = 2(
√

ε1ε2 − ε2),

f3 =
[18µ0

√
ε1 (4ε2 − 7ε1)

(ε1 + 2ε2)4
+

K0

2ε2
(7J−7/3 − 5J−5/3)

]
f5 +

54µ0ε1(ε1 − ε2)√
ε2(ε1 + 2ε2)3

,

f4 =
Mρ̂

√
ε1

ε2
, M = 3

r̂′∫
0

ρ̂r̂′2 dr̂′, α = α1ε
1/2
2(A), α1 =

4πG

3µ∗
ρ2
∗R̂

2
1;

α1 and α are dimensionless constants; the expression for α includes the sought quantity ε2 = ε2(A) at r′ = 1, which
should be determined from the solution of the problem; nondimensionalizing is performed as follows: ρ̂ and ρ are
normalized by ρ∗; µ0 and K0 by µ∗; M by (4/3)πR̂3

1ρ∗ (ρ∗ = 1 g/cm3 and µ∗ = 105 MPa). To represent ρ̂ and
M as the functions of r′, we interpolate the known values of these quantities at the nodes with the coordinates of
the nodes r̂′ using the dependence r′(r̂′) available in the iteration. The boundary conditions σ̂1 = P1 at r′ = 1 and
ε1 = ε2 at r′ = 0 and the continuity condition for σ̂1 and ε2 at the boundary points between the layers are satisfied.
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The solution of system (4.8) satisfying the specified boundary conditions is found by the Runge–Kutta
method as a solution of the problem with the initial conditions obtained at the point r′ = 1 by specifying the
value of the parameter ξ. For each ξ, formulas (4.6) and (4.7), we determine the values of J , ε1, and ε2 = ε2(A)

for r′ = 1 and the values of the constants α1 and α. Runge–Kutta calculations are performed beginning from the
point r′ = 1 in the direction to the point r′ = 0. In each layer, calculating ε1 and, ε2 and using the continuity
condition for σ̂1 and ε2 at the boundary point with the underlying layer, we obtain the values of ε1 and ε2 at
this point for the underlying layer and then continue the calculations in this layer. To eliminate the uncertainty
0 : 0 at the center r′ = 0, the calculation in the inner core is performed only to the point r′δ = 0.0005. Iterations
yield ξ that ensures calculation of ε1 and ε2 up to the point r′δ at which the equality ε1 = ε2 is satisfied with
sufficient accuracy. It should be noted that the value of ξ should be determined with high accuracy [15–18 digits
after the comma to achieve smallness of the difference (ε1 − ε2) of order 10−6 at the point r′δ]. The errors of the
solutions of Eqs. (4.8) (the values of the left sides of these equations) are represented by oscillating functions r′ with
reasonably small oscillation amplitudes, which are smaller in the central segments of the layers and increase when
approaching the boundary points between the layers. For each layer B, C, D, E, and G, the integrals of the left
sides of Eqs. (4.8) calculated from the variable point r′ in the layer to the upper boundary of the layer have order
not below than 10−6.

Thus, the validity of the solutions of the equilibrium problems obtained using the outlined algorithm is
confirmed by the fact that both Eqs. (4.8) and the integral equalities obtained from them by integrating over r′ are
satisfied with small errors.

We note that the numerical solution for the outer core obtained for the specified small shear modulus µ

differs insignificantly from the analytical solution for µ = 0 found by the formulas

p = σ̂1 = σ̂2 = (σ̂1 − P )r̂=r̂D
+ P, J =

(3K + 7p

3K + 5p

)3/2

,

ε2 = r̂2
{ r̂∫

r̂D

3r̂2J−1dr̂ +
[
(r̂−2ε2)r̂=r̂D

]−3/2}−2/3

, ε1 =
( J

ε2

)2

using the values of P , σ̂1, and ε2 are calculated in the mantle at the boundary to the outer core r̂ = r̂D. In the
outer core, this solution corresponds to values of the density ρ = Jρ̂, modulus K0 = 2K(7J−7/3 − 5J−5/3)−1, and
radial coordinate r′ = r̂′(ε2(A)/ε2)1/2, which are close to the data of Table 1.

Table 1 gives the density ρ, shear and bulk moduli µ0 and K0, and Poisson’s ratio ν0 for the unstrained
material. Let us consider the distributions of these values on the segment 0 < r̂′ < 1. The bulk modulus K0

typically increases with depth. Characteristic features of K0 are a small decrease in passing from the outer core to
the inner core and the presence of a weak minimum in the outer core near the boundary to the mantle. The sharp
increase in K0 due to passage from the mantle to the outer core is much larger than that in K.

The distributions of µ0, ν0, and µ, ν are similar. In layers B and C, Poisson’s ratio ν0 takes maximum values
in the limit when approaching the boundary point between these layers, at which ν0 decreases sharply in passing
from B to C; in most of layer D, the value of ν0 changes insignificantly, increasing with approach to layer C and
decreasing with approach to the outer core. In the outer core, Poisson’s ratio ν0 (as well as ν in the compressed
state of the Earth) is close to 0.5. Over the entire range of the solution, 0 < ν0 < 0.5.

The density of the material in the unloaded state ρ typically increases with depth. At the boundary between
the mantle and the core, its sharp increases is somewhat greater than that of for ρ̂. Characteristic features of ρ are
weak minima in layer D, in the outer core, and at the center r̂′ = 0 and a small sudden decrease in passing from
the outer core to the inner core.

In Figs. 1–5, the curves of the functions versus r̂′ undergo discontinuities at the boundary points between
layers B and C, between the mantle and the outer core, and between the outer core and the inner core. At these
boundary points, the functions undergo a sudden change. The figures give the values of σ̂1, σ̂2, P , Ψ, Ψ1, and Ψ2

referred to µ∗.
Figure 1 shows curves of the stresses σ̂1 and σ̂2 = σ̂3 and purely hydrostatic compression pressure P versus r̂′.

The radial stress σ̂1 (solid curve) changes continuously and increases with depth. The circumferential stresses σ̂2

(dashed curve) increase with depth inside the layers; they increase suddenly in passing from layer B to layer C and
decrease in passing from the mantle to the outer core and from the outer core to the inner core. In the mantle, σ̂1

866



0.20 0.4 0.6 0.8 1.0

_3

_4

_2

_1

0

r
^0

s
^

1, s
^

2, P

0.20 0.4 0.6 0.8 1.0

0.80

0.85

0.75

0.90

1.00

0.95

1.05

e1, e2

r^0

Fig. 1 Fig. 2

and σ̂2 have significantly different values; on the boundary surface r̂′ = 1, the circumferential stresses are almost 19
times higher than the radial stresses. As the depth increases, the stress difference (σ̂1 − σ̂2), decreasing somewhat
in layer B, increases suddenly in passing to layer C and, continuing to increase, reaches the maximum in layer D,
and then decreases in the mantle. In the mantle at the boundary to the outer core, σ̂2 is approximately 22% higher
than σ̂1. In the stress state in the core, the stresses σ̂1 ≈ σ̂2 ≈ p are almost identical. In the mantle, the purely
hydrostatic compression pressure P (shown by points in Fig. 1) increases with depth and approaches the value of
σ̂2. In the core, the stresses are lower than P ; at the center, they are approximately 10% lower.

The variability of µ0, K0, and ρ is responsible for the complex distribution of the strains along the Earth’s
radius in the case of adiabatic or isothermal stress relief. In Fig. 2, the solid and dashed curves show the squares
of the main multiplicities of the elongations ε1 and ε2 as functions of r̂′. [In considering the strained state, one
should bear in mind that in the radial and circumferential fibers (i = 1, 2) in the case of tensile strain εi > 1,
stress relief leads to shortening, and in the case of compressive strain εi < 1, it leads to elongation; in the case of
bulk compressive strain J < 1, stress relief leads to an increase in the volume of the material, which is the larger
the stronger the compression.] In the circumferential direction, we have compressive strain ε2 < 1 (dashed curve);
as the depth increases, ε2 changes continuously and decreases. We note a considerable compressive strain of the
circumferential fibres ε2 = 0.8579 on the surface r̂′ = 1; at the center, ε1 = ε2 ≈ 0.7648.

In the radial direction in the mantle to a depth of 506 km (reckoned from the surface r̂ = R̂), we have tensile
strain ε1 > 1 (solid curve in Fig. 2), and in layer B, the value of ε1 and elongation of the radial fibers increase with
depth from ε1 = 1.0431 at r̂′ = 1 to the maximum ε1 = 1.0473 at a depth of 71.7 km, after which ε1 in the mantle
decreases. In passing from the mantle to the outer core, the value of ε1 increases suddenly, the radial strain in the
outer core is much smaller than the circumferential strain despite the nearly equal stresses σ̂1 ≈ σ̂2. With depth, ε1

decreases, approaching ε2. There is a minimum of ε1 at the boundary to the inner core. In passing to the inner
core, ε1 decreases sharply.

In the inner core, with closeness of the values of ε1 ≈ ε2 there is a complex nature of variation in the
value of ε1, which practically coincides with ε2 at the boundary to the outer core, increases with distance from the
boundary to reach a maximum, and then decreases, approaching ε2. The value of ε2 in the inner core decreases
monotonically.

Bulk compressive strain J < 1 occurs over the entire sphere (Fig. 3) but the compression is minimum not
on the surface r̂′ = 1, where J = 0.8762, but at a depth of 56.8 km with J = 0.8771. Characteristic features of J

are a sudden decrease in passing from layer B to layer C and from the outer core to the inner core and a sudden
increase J in passing from the mantle to the outer core. There are a minimum of J in the outer core near the
boundary to the inner core and a local maximum of J in the inner core. The maximum compression is reached at
the center r̂′ = 0, where J ≈ 0.6689.
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The quantity Υ characterizes the shear strain intensity. In layer B, it increases with depth from Υ = 0.003004
on the surface r̂′ = 1 to the maximum over the entire sphere Υ = 0.00318 at a depth of 81.6 km, after which the
value of Υ decreases in the mantle. The value of Υ decreases suddenly in passing from layer B to layer C and
increases suddenly in passing from the mantle to the outer core. In the outer core, Υ decreases with depth, reaches
a minimum near the boundary to the inner core, then increases somewhat, and decreases suddenly in passing to
the inner core. In the inner core, Υ is negligible and has a local maximum here.

With increase in depth, the strain energy densities Ψ and Ψ2 (shown by the solid and dashed curves in Fig. 4)
increase everywhere, except at the point of passage from the mantle to the outer core, where they decrease suddenly.
The shear strain energy density Ψ1 = Ψ − Ψ2 (Fig. 5) changes in a more complex manner. It has maxima: the
smaller Ψ1 = 428 MPa at a depth of 64.3 km and the larger Ψ1 = 527 MPa at a depth of 821.8 km. A characteristic
feature of Ψ1 is a considerable sudden decrease with passage from the mantle to the outer core. On the boundary
r̂′ = 1, the contribution of Ψ1 to the value of Ψ is 41%, and with increase in depth in the mantle, it decreases. In
the outer and inner cores, Ψ1 and its contribution to Ψ are negligible.

Table 2 gives the values of r′, (r − r̂), ε1, ε2, J , σ̂1, σ̂2, p, P , Ψ1, and Ψ2 at the nodes; the values at the
center are approximate values calculated at the close point r′ = 0.001. The values of the differences (r − r̂) are
the increments in the nodal coordinates due to passage from the compressed to the unloaded condition. Thus, the
radius of the boundary surface R̂1 = 6341 km increases to R1 = 6846 km, i.e., by R1 − R̂1 = 505 km.

868



TABLE 2
Stressed and Strained State

Node r′ r − r̂,
km

ε1 ε2 J
σ̂1,
103

MPa

σ̂2,
103

MPa

P ,
103

MPa

Ψ1,
103

MPa

Ψ2,
103

MPa

1 1 505 1.0431 0.8579 0.8762 −0.841 −15.94 −0.841 0.4197 0.6045

2 0.990 506.6 1.0461 0.8561 0.8756 −2.82 −17.67 −3.15 0.4229 0.7079

3 0,9757 508,6 1,0359 0,8535 0,8687 −5.69 −20.17 −6.494 0.3953 0.8955

4 0.9613 510.2 1.0292 0.851 0.8633 −8.61 −22.94 −9.887 0.382 1.098

5
0.9469 511.5 1.0245 0.8484 0.8577 −11.57 −25.85 −13.32 0.3758 1.311
0.9469 511.5 1.015 0.8484 0.8547 −11.57 −27.84 −13.32 0.4061 1.429

6 0.9104 511.3 0.9859 0.8427 0.8367 −19.82 −43.46 −23.31 0.5062 2.502

7 0.8585 506.4 0.9594 0.8351 0.818 −31.9 −59.06 −38.69 0.5035 3.846

8 0.7068 467.5 0.9001 0.8161 0.7742 −69.11 −94.12 −88.22 0.3114 7.812

9 0.5981 423.4 0.8704 0.8039 0.75 −97.46 −121 −125.1 0.2309 11.11

10
0.5684 409.3 0.8621 0.8007 0.7434 −106.1 −129.4 −136.3 0.2107 12.16
0.5684 409.3 0.9617 0.8007 0.7852 −106.1 −107.1 −136.3 2.324 · 10−2 9.363

11 0.3942 327.5 0.8028 0.772 0.6917 −218.7 −218.9 −247.9 8.9 · 10−4 24.73

12
0.202 171.8 0.7707 0.767 0.6733 −300.1 −300.2 −334.8 1.3 · 10−5 35.13
0.202 171.8 0.767 0.767 0.6717 −300.1 −300.1 −334.8 1.4 · 10−9 35.23

13 0 0 0.7648 0.7648 0.6689 −333.5 −333.5 −369.1 0 39.35

Conclusions. 1. Distributions of the shear and bulk moduli µ0 and K0 in adiabatic or isothermal processes
of stress relief and the material density ρ in the unstrained state were obtained.

2. The theory of isotropic hyperelastic bodies suggests that in the mantle there is anisotropy of the ma-
terial resistance to additional deformation, which influences the propagation of body waves generated by seismic
disturbances.

3. The stress state in the mantle differs considerably from the state of purely hydrostatic compression.
The circumferential stresses at the upper boundary of the region far exceed the radial stress, resulting in a strong
compression of circumferential fibers at this boundary. At the center of the Earth, the pressure is approximately 10%
lower than the purely hydrostatic compression pressure.

4. In the mantle to a depth of 506 km, radial tensile strains rather than compressive strains occur, which
reach a maximum at a depth of 71.7 km. In the outer core near the boundary to the mantle, the radial and
circumferential strains differ considerably (although σ̂1 ≈ σ̂2).

5. Bulk compressive strain occurs over the entire region (J < 1), but with increase in depth starting from
the boundary surface, the compression decreases rather than increases, reaches a minimum at a depth of 56.8 km,
and then increases in the mantle. The maximum bulk compressive strain occurs at the center of the Earth.

6. The shear strain energy density Ψ1 makes a considerable contribution to the total strain energy density Ψ
near the boundary surface. As the depth increases, the contribution of Ψ1 decreases rapidly and becomes negligible
in the core. The maxima of Ψ1 are reached at depths of 64.3 km (the smaller maximum) and 821.8 km (the larger
maximum).

7. The employed algorithm provides a high-accuracy solution of the equilibrium problem, which is confirmed
by the fact that the conditions of the problem are satisfied with small errors.

This work was performed within the framework of integration project of the Siberian Division of the Russian
Academy of Sciences (Project No. 82) and supported by the Russian Foundation for Basic Research (Grant No.
02-01-00195).
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